

#### **Interactive Graph Cuts**

#### for Optimal Boundary & Region Segmentation of Objects in N-D Images

Yuri Y Boykov and Marie-Pierre Jolly

IEEE Intl. Conf. on Computer Vision (ICCV), 2001

Speaker: Shih-Shinh Huang

July 10, 2024



#### **Outline**

- Introduction
  - Motivation
  - Problem Description
  - Central Idea
- Graph-Based Modeling
  - Graph Construction
  - Cost Function Definition
  - Cost Minimization





#### Motivation

• The problems from automatic segmentation can be alleviated via user guidance



#### interactive segmentation

- identify the parts of the object
   (obj) and background (bg)
- compute a segmentation that adheres to the user setting





- Problem Description
  - Given: an image and two sets of **obj/bg** points provided by the user
  - Goal: find a segmentation (an assignment of points)
    - well separate the object points from background ones
    - adhere to user's constraints

| obj | 7 | 4 | 2 | assign a label (obj/bg) | (7) | 4 | 2   |          |
|-----|---|---|---|-------------------------|-----|---|-----|----------|
|     | 3 | 6 | 1 | to every point          | 3   | 6 | 1   |          |
|     | 5 | 0 | 2 | bg                      | 5   | 0 | (2) |          |
| J   |   |   |   | •                       |     |   |     | Nkfustoo |



- Central Idea
  - enforce both **boundary** and **region** properties
    - boundary property: pixels with significant intensity differences from their neighbors are boundaries
    - region property: pixels with similar intensities to
       obj/bg are inclined to be labeled as obj/bg







- Central Idea
  - formulate segmentation as an **optimization** problem
    - define a cost function E(.) based on two properties of the segmentation c.

$$E(c) = \Re(c) + \Re(c)$$

a segmentation rigiportance boundary cost function cost function

| 7 | 4     | 2 | 7 | 4     | 2 |   | 7 | 4     | 2 |
|---|-------|---|---|-------|---|---|---|-------|---|
| 3 | 6     | 1 | 3 | 6     | 1 |   | 3 | 6     | 1 |
| 5 | 0     | 2 | 5 | 0     | 2 | _ | 5 | 0     | 2 |
|   | $c_1$ |   |   | $c_2$ |   |   |   | $c_n$ |   |





- Central Idea
  - formulate segmentation as an **optimization** problem
    - minimize E(.) to find an optimal segmentation  $\hat{c}$

$$\hat{\boldsymbol{c}} = \operatorname{argmin}_{c} E(\boldsymbol{c})$$







- Central Idea
  - solve the problem via the **graph-cut** algorithm
    - model the optimization problem as a graph
    - determine the  $\hat{c}$  through minimum cut algorithm







- Graph Construction
  - use an undirected graph **G** = (**V**, **E**, **W**) to describe an image
    - $\mathbf{V} = \{ \boldsymbol{v} \}$ : a set of vertices
    - $\mathbf{E} = \{e\}$ : a set of edges  $e = (v_i, v_j)$  defined under a neighborbooh system.
    - $\mathbf{W} = \{\mathbf{w}\}$ : a set of weights assigned to the edges  $\mathbf{E}$





- Graph Construction: V (vertices) definition
  - $oldsymbol{\cdot}$  model each pixel as a pixel vertex  $oldsymbol{v}$
  - add two terminal vertices source (s) and sink (t)

$$\mathbf{V} = \{\boldsymbol{v}\} \cup \{\boldsymbol{s}, \boldsymbol{t}\}$$



| 7 | 4 | 2 |
|---|---|---|
| 3 | 6 | 1 |
| 5 | 0 | 2 |



sink (background)





- Graph Construction: E (edges) definition
  - model spatial relation between  $v_i$  and  $v_j$  by a neighboring edge  $e_{i,j} = (v_i, v_j)$
  - add two <u>terminal edges</u>  $e_{s,i} = (s, v_i)$  and  $e_{t,i} = (t, v_i)$  for every pixel vertex  $v_i$

$$\mathbf{E} = \{\boldsymbol{e}_{i,j}\} \cup \{\boldsymbol{e}_{s,i}\} \cup \{\boldsymbol{e}_{t,j}\}$$





• Graph Construction: **E** (edges) definition





- Graph Construction: W (weights) definition
  - a weight assigned to an edge  $e_{ij} = (v_i, v_j)$  is the penalty (cost) when  $l(v_i) \neq l(v_i)$







- Graph Construction: W (weights) definition
  - a weight assigned to an edge  $e_{ij} = (v_i, v_j)$  is the penalty (cost) when  $l(v_i) \neq l(v_i)$





- Cost Function Definition:  $e_{i,j} = (v_i, v_j)$ 
  - $w(e_{i,i})$  is modeled using <u>ad-hoc</u> function

$$w(e_{i,j}) = exp\left(-\frac{(v_i)^2}{2 \times \sigma^2}\right)$$
 pixel intensity camera noise (2.0)

$$\begin{array}{c|c}
\hline
7 & 4 & 2 \\
\hline
3 & 6 & 1 \\
\hline
\hline
5 & 0 & 2
\end{array}
\qquad \exp\left(-\frac{(6-4)^2}{2\times 2^2}\right) = \exp(-0.5) = 0.60$$

$$\exp\left(-\frac{(6-1)^2}{2\times 2^2}\right) = \exp(-3.125) = 0.04$$



- Cost Function Definition:  $e_{s,i} = (s, v_i)$ 
  - $w(e_{s,i})$  is the **penalty** (cost) when  $l(v_i) \neq \underline{obj}$ 
    - $v_i$  is obj vertex:  $w(e_{s,i}) = K$  (large weight)
    - $v_i$  is **bg** vertex:  $w(e_{s,i}) = 0$







- Cost Function Definition:  $e_{s,i} = (s, v_i)$ 
  - $w(e_{s,i})$  is the **penalty** (cost) when  $l(v_i) \neq \underline{obj}$ 
    - $v_i$  is UNK vertex: <u>negative log-likelihood</u> of intensity distribution of <u>background region</u>





- Cost Function Definition:  $e_{s,i} = (s, v_i)$ 
  - $w(e_{s,i})$  is the **penalty** (cost) when  $l(v_i) \neq \underline{obj}$ 
    - *v* is **UNK** vertex: <u>negative log-likelihood</u> of intensity distribution of **background region**





- Cost Function Definition:  $e_{t,i} = (t, v_i)$ 
  - $w(e_{t,i})$  is the penalty (cost) when  $l(v_i) \neq \underline{bg}$ 
    - $v_i$  is obj vertex:  $w(e_{t,i}) = 0$
    - $v_i$  is **bg** vertex:  $w(e_{t,i}) = K$  (large weight)







- Cost Function Definition:  $e_{t,i} = (t, v_i)$ 
  - $w(e_{t,i})$  is the <u>penalty</u> (cost) when  $l(v_i) \neq \underline{bg}$ 
    - $v_i$  is UNK vertex: <u>negative log-likelihood</u> of intensity distribution of <u>object region</u>

$$-\ln(\Pr(I_v = 0|\mathbf{obj})) \times \lambda$$

$$= -\ln(0.01) \times 1 = 4.6$$











- Cost Minimization
  - A segmentation is a partition (cut) c = (S, T) of vertices into two disjoint sets S and T
    - $S \cup T = V$  and  $S \cap T = \emptyset$
    - $s \in S$  and  $t \in T$
  - The cost of a partition (cut) c is the sum of the weights of edges between S and T

$$E(c) = \sum_{e=(v_i \in S, v_j \in T)} w(e)$$





- Cost Minimization
  - The optimal segmentation  $\hat{c}$  is the cut with the minimum cost (minimum cut).

$$\hat{\boldsymbol{c}} = \operatorname{argmin}_{c} E(\boldsymbol{c})$$

The minimum cut can be found via well-known maximum flow algorithm

Y. Boykov and V. Kolmogorov, "An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision," *EMMCVPR*, 2001





